A Radial Basis Function Spike Model for Indirect Learning via Integrate-and-Fire Sampling and Reconstruction Techniques
نویسندگان
چکیده
This paper presents a deterministic and adaptive spike model derived from radial basis functions and a leaky integrate-andfire sampler developed for training spiking neural networks without direct weight manipulation. Several algorithms have been proposed for training spiking neural networks through biologically-plausible learning mechanisms, such as spike-timingdependent synaptic plasticity and Hebbian plasticity. These algorithms typically rely on the ability to update the synaptic strengths, or weights, directly, through a weight update rule in which the weight increment can be decided and implemented based on the training equations. However, in several potential applications of adaptive spiking neural networks, including neuroprosthetic devices and CMOS/memristor nanoscale neuromorphic chips, the weights cannot be manipulated directly and, instead, tend to change over time by virtue of the preand postsynaptic neural activity. This paper presents an indirect learning method that induces changes in the synaptic weights by modulating spike-timing-dependent plasticity by means of controlled input spike trains. In place of the weights, the algorithmmanipulates the input spike trains used to stimulate the input neurons by determining a sequence of spike timings that minimize a desired objective function and, indirectly, induce the desired synaptic plasticity in the network.
منابع مشابه
Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملUnsupervised Learning of Head Pose through Spike-Timing Dependent Plasticity
We present a biologically inspired model for learning prototypical representations of head poses. The model employs populations of integrate-and-fire neurons and operates in the temporal domain. Timesto-first spike (latencies) are used to develop a rank-order code, which is invariant to global contrast and brightness changes. Our model consists of 3 layers. In the first layer, populations of Ga...
متن کاملAdaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot
The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...
متن کاملCollocation Method using Compactly Supported Radial Basis Function for Solving Volterra's Population Model
In this paper, indirect collocation approach based on compactly supported radial basis function (CSRBF) is applied for solving Volterra's population model. The method reduces the solution of this problem to the solution of a system of algebraic equations. Volterra's model is a non-linear integro-differential equation where the integral term represents the effect of toxin. To solve the pr...
متن کاملComputing and Learning with Spiking Neurons – Theory and Simulations
There is strong evidence that biological neurons encode through their firing information not only in the firing rate but also in the timing of single spikes. This thesis explores various ways for computing and learning with networks of simplified spiking neurons (essentially of the leaky integrate-and-fire type) using temporal coding. We present both supervised and unsupervised learning rules, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. Artificial Neural Systems
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012